
Copyright 2022 Joseph Yoder & The Refactory, Inc. 1

When should I consider
Meta-Architectures?

Copyright 2022 Joseph Yoder & The Refactory, Inc.

Motivation: Need to Quickly Adapt to Change

➢Business Rules or Domain Elements

are changing quickly:

- New calculations for insurance policies

and new types of policies offered

- Online store catalog with new products

and services and rules applying to them

- New cell phone product and services…

➢Need quick ways to develop and

adapt to these changing requirements

Copyright 2022 Joseph Yoder & The Refactory, Inc. 2

➢ Find what is changing a rapidly

➢ Represent classes, attributes, behaviors and
relationships as metadata

➢ Experts change the metadata (object model)
to reflect changes in the domain

➢ Object-Model stored in a database or in
files and interpreted (can be XML/XMI)

Consequently, the object model is adaptable without
writing code. When you change the metadata, the

system behavior changes.

Adaptive Object-Model

General Design Principles

Elements of

Adaptive Object Models

• Strategy/RuleObjects

• Entity-Relationship

• Interpreters/Builders

• Editors/GUIs

If you want something to change quickly,

push it into data and build tools geared

towards changemakers’ needs.

• Metadata

• TypeObject

• Properties

• TypeSquare

Copyright 2022 Joseph Yoder & The Refactory, Inc. 3

Drive Practices

Patterns!

Copyright 2022 Joseph Yoder & The Refactory, Inc. 4

What is a Pattern?

Patterns can be thought of “Good Practices”

Proven Solutions to Repeating Problems

Proven Practices to Repeating Situations

Embody Experiences of What Works…
…and What Doesn’t Work

Captures or Describes Knowledge of Experts

Embody “Quality” Attributes for

Solutions to specific Designs

Go to hillside.net for more info

Type-Object

Before

PLoPD3 - Johnson and Woolf

Symptom: Explosion of classes based on
minor attribute differences

Solution: Factor
common attributes into
“type” classes

After

Copyright 2022 Joseph Yoder & The Refactory, Inc. 5

Properties

Creating subclasses for
minor attribute
variations makes the
system static and brittle.

Before

Allow instances of a given class
to have different attributes.
Factor each attribute into a
separate Property associated
with the class.

After

But this still isn’t flexible enough

➢Each time a property is added or changed
on its type, the code will need changing.

➢How do we define new types of properties?

➢How do we validate the proper types?

Copyright 2022 Joseph Yoder & The Refactory, Inc. 6

Entity

Property

EntityType

PropertyType

-name : String

-type : Type

0..n type

0..nproperties

0..n type

0..n properties

TypeSquare

Example: Now it is easy to add different kinds of catalog items

◼ Sweaters (size=(S,M,L,XL), color=(red,green,blue,yellow,…)

◼ Canoes (length=float, width=float)

Constrains
possible
properties for an
entity

Constrains
type of a
property

Type Square
(instance diagram)

anEntityType

<vinylAudioRec>

anEntity

Joe’s Garage

aPropertyType

<AudMedia(Str)>

aProperty

name <SuperFid>

aPropertyType

<RecSpeed (int)>

aProperty

name <45>

Copyright 2022 Joseph Yoder & The Refactory, Inc. 7

Dealing with Behavior/Rules

➢Making methods that implement the different
algorithm for each Type or Property could require a
large case-statement and could be impractical to
maintain.

➢ Instances for the similar types can have different
algorithm depending upon context.

The model has to implements a defined set

of interchangeable algorithms that

customize the behavior of the system.

Strategies/RuleObjects Solution
(Behavior/Methods)

Design Patterns - GOF95

SomeStrategy

+sharedInterface()

-sharedAttributes : someType

Strategy1 Strategy2 StragegyN

...

Entity

+someOperations()

-specificAttribues : type

Strategy2.1 Strategy2.2

*

*

1

1

Copyright 2022 Joseph Yoder & The Refactory, Inc. 8

Entity

Property

EntityType

PropertyType

-name : String

-type : Type

Rule

PrimRule CompositeRule

rule0..n type

0..nproperties

0..n type

0..n properties

0..n

Behavior

Putting It All Together
(Very Common Structure)

ECOOP & OOPSLA 2001 Yoder, Balaguer, Johnson

Classes with
Attributes

Operational Knowledge (meta)

In my youth…two bad words
M and R words
“Metadata and Reflection”

Copyright 2022 Joseph Yoder & The Refactory, Inc. 9

Metadata

The Power of Metadata

Code is data, data is code. Everything
is data. Data drives the behavior.

Meta data simply describes other data.

“If something is going to vary in a
predictable way, store the description
of the variation in a database so that it
is easy to change” – Ralph Johnson

"Anything you can do, I can do Meta"

"Meta is Beta"

Copyright 2022 Joseph Yoder & The Refactory, Inc. 10

An AOM Example…

Refactoring as We Go

Newborn Screening
Refactoring Example

Mother, Infant

Hospital, Lab

Doctor, HealthProf.

Blood Specimen

Copyright 2022 Joseph Yoder & The Refactory, Inc. 11

Medical Observation –
Basic OO Design Model

What happens when a new observation is required?

PhysicalMeasure

Blood

Observation Person

Measurement

 convertTo:

Trait

 traitValue
Quantity

 unit

 amount

 expressOnUnit:

expressOnUnits:

EyeColor

HairColor

Gender

Height

Weight

…

…

FeedingType

Hearing

Vision

*

Observation Design
(1st Design)

Person

+address()

+phone()

+name()

Observation

+phenomenon()

-recordedDate : Date

-observedDate : Date

-duration : TimePeriod

Measurement

+observationValue()

Trait

+observationValue()

ObservationType

-phenomenon : Symbol

Quantity

+expressOnUnit(aUnit : Unit)

+expressOnUnits(unitCollection : Collection)

-unit : Unit

-amount : Number

* *1 1

1 1

Copyright 2022 Joseph Yoder & The Refactory, Inc. 12

Name: John Smith
Mother: Sue Smith

Father:

Address:

Phone:

Height: 3 feet

Eyes Color: Blue

Observation Design
Example

Observation Design
(instance diagram)

Copyright 2022 Joseph Yoder & The Refactory, Inc. 13

Composing Observations

Observations can be more complex

➢Cholesterol
– Components: HDL, LDL

➢Blood Pressure
– Components: Systolic, Diastolic

➢Vision
– Components: Left Eye, Right Eye

Composite Observation Design
(1st Refactoring)

Composite Pattern (GOF)

Make sure all tests still pass!

Person

+address()

+phone()

+name()

Observation

+phenomenon()

-recordedDate : Date

-observedDate : Date

-duration : TimePeriod

Measurement

+observationValue()

Trait

+observationValue()

ObservationType

-phenomenon : Symbol

Quantity

+expressOnUnit(aUnit : Unit)

+expressOnUnits(unitCollection : Collection)

-unit : Unit

-amount : Number

CompositeObservation

-observations : Collection

1..n

Copyright 2022 Joseph Yoder & The Refactory, Inc. 14

Observation Design
Example

Name: John Smith
Mother: Sue Smith

Father:

Address:

Phone:

Height: 3 feet

Eyes Color: Blue

Blood Pressure:

 Systolic: 120 mmHg

 Diastolic: 80 mmHg

Composite Observation Design
(instance diagram)

Copyright 2022 Joseph Yoder & The Refactory, Inc. 15

Composite and Primitive
Observation Design

What we know about John?

Validating Observations

➢Each Observation has its
own set of legal values:
–Baby’s Weight: [0..30] pounds
–HepatitisB: {positive, negative}
–Left/Right Vision: {normal, abnormal}

➢The GUI could enforce legal values
–but we prefer these business rules

in domain objects

Copyright 2022 Joseph Yoder & The Refactory, Inc. 16

ObservationType

-phenomenon : Symbol

-validator : Validator

Validator

DiscreteValidator

-descriptorSet : Collection

NullValidator RangedValidator

-intervalSet : Collection

-validUnit : Unit

Validating Observations Design
(2nd Refactoring)

Is everything an Observation?

How does the model specify the structure of the Composite?

What is the relationship between Trait and DiscreteValidator?

Overall Observation Design

First make sure original test cases pass and
then add new test cases for the validators!

Copyright 2022 Joseph Yoder & The Refactory, Inc. 17

 ObservationType

 phenomenonType

 isValid: obsValue

Party

Primitive Observation

 observationValue
CompositeObservation

Observation

 recordedDate

 comments

 isValid

Validator

 validatorName

 isValid: obsValue

DiscreteValidator

 descriptorSet

RangedValidator

 intervalSet

 validUnit
PrimitiveObservation

Type

CompositeObservation

Type

NullValidator

Quantity

 unit

 quantity

 convertTo:

DiscreteValues

Observation Design

Extend by adding Composite to Type

Refactor the Metadata!

Observation Design

 ObservationType

 phenomenonType

 isValid: obsValue

Party

Primitive Observation

 observationValue
CompositeObservation

Observation

 recordedDate

 comments

 isValid

Validator

 validatorName

 isValid: obsValue

DiscreteValidator

 descriptorSet

RangedValidator

 intervalSet

 validUnit
PrimitiveObservation

Type

CompositeObservation

Type

NullValidator

Quantity

 unit

 quantity

 convertTo:

DiscreteValuesOperational level

Extend by adding Composite to Type

Refactor the Metadata!

Copyright 2022 Joseph Yoder & The Refactory, Inc. 18

Observation Design

 ObservationType

 phenomenonType

 isValid: obsValue

Party

Primitive Observation

 observationValue
CompositeObservation

Observation

 recordedDate

 comments

 isValid

Validator

 validatorName

 isValid: obsValue

DiscreteValidator

 descriptorSet

RangedValidator

 intervalSet

 validUnit
PrimitiveObservation

Type

CompositeObservation

Type

NullValidator

Quantity

 unit

 quantity

 convertTo:

DiscreteValues

Knowledge level

Extend by adding Composite to Type

Refactor the Metadata!

Observation Design
(instance diagram)

Copyright 2022 Joseph Yoder & The Refactory, Inc. 19

Observation Design
(instance diagram)

Observations: TypeObject

TypeObject

1..* elements

1 descriptor

elements 1..*

1..*

instance

ObservationType

phenomenonType

isValid: obsValue

Primitive Observation

observationValue
CompositeObservation

Observation

recordedDate

comments

isValid

PrimitiveObservation

Type

CompositeObservation

Type

Quantity
unit

quantity

convertTo:

DiscreteValues

Operational level

value 1..*

dvalue 1..*

Knowledge level

Copyright 2022 Joseph Yoder & The Refactory, Inc. 20

Observations: Properties

properties

1..*

elements 1..*

1..*

instance

Party

Primitive Observation

observationValue
CompositeObservation

Observation

recordedDate

comments

isValid

Quantity
unit

quantity

convertTo:

DiscreteValuesOperational level

value 1..*

dvalue 1..*

Knowledge level

Observations: TypeSquare
contDescr 1

1 descriptor

1..* elements

1..* varType

elements 1..*

1..*

instance

ObservationType

phenomenonType

isValid: obsValue

Party

Primitive Observation

observationValue

CompositeObservation

Observation

recordedDate

comments

isValid

PrimitiveObservation

Type

CompositeObservation

Type

Quantity

unit

quantity

convertTo:

DiscreteValuesOperational level

PartyType

1 descriptor

properties

1..*

1..*

value 1..*

dvalue 1..*

Knowledge level

Copyright 2022 Joseph Yoder & The Refactory, Inc. 21

Observations: Strategy

guard 1
ObservationType

phenomenonType

isValid: obsValue

Validator

validatorName

isValid: obsValue

DiscreteValidator

descriptorSet

RangedValidator

intervalSet

validUnit

PrimitiveObservation

Type

CompositeObservation

Type
NullValidator

Operational level

1..* elements

1..* type

Knowledge level

Medical Observations Design

1 descriptor

elements 1..*

1..*

instance

ObservationType

phenomenonType

isValid: obsValue

Party

Primitive Observation

observationValue

CompositeObservation

Observation

recordedDate

comments

isValid

Validator

validatorName

isValid: obsValue

DiscreteValidator

descriptorSet

RangedValidator

intervalSet

validUnitPrimitiveObservation

Type

CompositeObservation

Type

NullValidator

Quantity

unit

quantity

convertTo:

DiscreteValuesOperational level

1..* elements

guard 11..* type

PartyType

1 descriptor

properties

1..*

1..*

value 1..*

dvalue 1..*

Knowledge level

1..* varType

contDescr 1
Entities

Attributes

Behavior

Copyright 2022 Joseph Yoder & The Refactory, Inc. 22

Refactoring Leverage
• Refactoring exploits Brooks’ “promising attacks”

from No Silver Bullet:

– grow don’t build software: software growth involves
restructuring (this is core to Agile);

– requirements refinements and rapid prototyping: refactoring
supports such design exploration, and adapting to changing
customer needs;

– support great designers: refactoring is yet another tool in a
designer’s tool chest.

Extending our Example
to Include…

Copyright 2022 Joseph Yoder & The Refactory, Inc. 23

Infants, Mothers and Doctors...

Entities and
Relationships

Person

+name : String

-address : String

-phone : String

Infant

+gestetionalAge : Number

Mother Doctor LabTechnician

Putting it all together

Newborn Screening

Person

+name : String

-address : String

-phone : String

Infant

+gestetionalAge : Number

Mother DoctorLabTechnician Hospital

Organization

+name : String

-address : String

-phone : String

Lab

n 1..1

n

n

n 1..1n n

Copyright 2022 Joseph Yoder & The Refactory, Inc. 24

Analysis Patterns – Martin Fowler

Accountability Party

Accountability Type Party Type

0..n

1..nresponsible

0..n

1..ncommissioner

1..n

0..n

type

0..n

1..ntype

0..n

1..nlegal responsible

0..n

1..nlegal commissionersupertype supertype

Entity-Relationship Patterns

Party and Accountability
Modeling relationships between entities

Sue Smith

John Smith

Sue is the mother of John

Copyright 2022 Joseph Yoder & The Refactory, Inc. 25

aParty

name <Sue>

Party and Accountability
(instance diagram)

anAccountabilityType

<PARENT>

anAccountabilityType

<CHILD>

anAccountabilityType

<PARENT>

anAccountability aPartyType

<MOTHER>

anAccountabilityaParty

name <John>
aPartyType

<INFANT>

aPartyType

<PERSON>

Entity

+valueUsing:()

Attribute

EntityType

+name

+type

AttributeType

-type

1 1

-attributes *

1

1

-type

*

-children *

1

-attributeTypes1

*

+valueUsing:()

Rule

TableLookup BinaryOperation

+value

Constant

1

-rules

*

1 *

*

*

1

*

CompositeRule

Accountability AccountabilityType-type

1 1

1

-children*-children *

1

-accountabilities1

* -children *

1

-accountabilitieTypes1

*

Putting it All Together: Adaptive
Object Model “Core Architecture”

Classes with
Attributes and
Relationships

Behavior

Operational Knowledge (meta)

Copyright 2022 Joseph Yoder & The Refactory, Inc. 26

Strategies/Interpreters/RuleObjects
(Behavior/Methods)

Design Patterns - GOF95

Composite Strategies ➔ Interpreter

SomeStrategy

+sharedInterface()

-sharedAttributes : someType

Strategy1 Strategy2 StragegyN

...

Entity

+someOperations()

-specificAttribues : type

Strategy2.1 Strategy2.2

*

*

1

1

RuleObject

PrimitiveRule CompositeRule

ANDCondition ORCondition NOTCondition

*

1

Composite Strategies

Problem: Strategy leads to a big class
hierarchy, one class for each kind of
policy

Solution: Make Composite Strategies
using Primitive Operations

=> Interpreter pattern

Copyright 2022 Joseph Yoder & The Refactory, Inc. 27

What About Roles?

Problem: How do you deal with dynamic
behavior for an object? For example, a
person can be either a mother, child, or
doctor in our system.

Solution: Create a Role Object that
defines their behavior. A “role”
defines a pluggable strategy.

Roles
(Parties, Accountabilities and Properties

is the Beginning of Roles)

➢Babies
– Have Mothers and Doctors

– Gestational Age,

– Hearing and Vision,

– Weight, Race, Ethnicity, DOB, ...

➢Mothers
– Have Babies and Doctors

– Hepatitus present at Birth (y/n),

– Languages, Race, Ethnicity, ...

Copyright 2022 Joseph Yoder & The Refactory, Inc. 28

Roles
(Parties, Accountabilities and Properties

is the Beginning of Roles)

➢ In our system, there are different types of
parties, relationships between them, and
properties on the parties, including different
observations.

➢ The pluggable behavior (or different roles) is
defined for a given party by the legal
relationships it can have and the set of
properties that are allowed.

Roles
(an example)

Person

+baseBehavior()

PersonRole

ChildRole

+childBehavior()

DoctorRole

+doctorBehavior()

MotherRole

+motherBehavior()

0..n

PLoP 97 - Fowler

PLoPD4 - Baumer, Riehle, Siberski, Wulf

Copyright 2022 Joseph Yoder & The Refactory, Inc. 29

Roles
(Parties, Accountabilities and Properties

is the Beginning of Roles)

anAccountabilityType

<CHILD>

aParty

name <Sue>

aPartyType

<MOTHER>

anAccountabilityType

<DOCTOR>

aParty

name <John>

anAccountabilityType

<PARENT>

aPartyType

<INFANT>

anAccountabilityType

<DOCTOR>

We have examined
the “core” patterns

for the domain model

What else is there?

How do you interact with
the domain?

…

Copyright 2022 Joseph Yoder & The Refactory, Inc. 30

We Have Only Shown Part of a
Larger AOM Pattern Language
➢ Core Patterns: the basic implementation of AOM

domain objects.

➢ Presentation Patterns: how to visually represent AOMs.

➢ Creational: how to create instances of domain objects.

➢ Behavioral: dynamically adding, removing or modifying behavior
(business rules).

➢ Process Patterns: the process of creating AOMs. They establish guidelines
for evolving frameworks and boundaries to avoid implementing meta
beyond what’s necessary.

➢ Miscellaneous: usage, control, and instrumentation of AOMs and guidelines
for non-functional requirements such as performance or auditability.

OOPSLA Poster Session

Copyright 2022 Joseph Yoder & The Refactory, Inc. 31

Other Issues

➢Metamodeling techniques

➢Persistence

➢Consistency (versions)

➢Dynamic GUIs

➢Managing Releases

➢Editors (Types and Rules)

➢Optimizers

➢…

Successfully Used For:
(some can be found in papers)

www.adaptiveobjectmodel.com

➢Representing Insurance Policies

➢Telephone Billing Systems

➢Workflow Systems

➢Medical Observations

➢Banking and Trading

➢Validate Equipment Configuration

➢Documents Management System

➢Gauge Calibration Systems

➢Simulation Software

Copyright 2022 Joseph Yoder & The Refactory, Inc. 32

Related Approaches
and Technologies
➢Generative Techniques
➢Black-box Frameworks
➢Metamodeling Techniques
➢Reflection Techniques
➢Domain Specific Languages
➢Table-driven Systems
➢UML Virtual Machine
➢Model Driven Architecture

When is an AOM or meta-
architectures a good solution?

➢High rate of business change

➢Great variability in domain

➢Desire to empower users and
leverage their domain expertise

➢Strong support for experimentation
and design evolution

Copyright 2022 Joseph Yoder & The Refactory, Inc. 33

The Business Case for an Adaptive
Object-Model System
➢Higher overall ROI

➢Better domain flexibility

➢Fosters business innovation

➢Supports business “ownership”

➢Can be done incrementally via
prototyping and design evolution

Downside of
Meta-Architectures

• Requires Skilled People
• Performance / Security
• Lack of Support/Tools
• Misused/Abused
• Complexity / Over Design
• …

Copyright 2022 Joseph Yoder & The Refactory, Inc. 34

Reasons to fail, even
with good intentions…
➢Inadequate bridge between business and

technology. You haven’t really addressed
who should extend the model and how.

➢Poor communication between domain
experts and programmers.

➢You underestimate or don’t provide good
support for operations and deployment.

➢Your domain experts aren’t good modelers.

Meta Collaborators
• Ademar Aguiar

• Francis Anderson

• Ali Arsanjani

• Jean Bezivin

• Paulo Borba

• Filipe Correia

• Krzysztof Czarnecki

• Ayla Dantas

• Martine Devos

• Hugo Ferreira

• Brian Foote

• Martin Fowler

• Richard Gabriel

• Eduardo Guerra

• Fabio Kon

• Atzmon Hen-Tov

• Ralph Johnson

• David H. Lorenz

• Patricia Matsumoto

• Lena Nikolaev

• Jeff Oaks

• Reza Razavi

• Nicolas Revault

• Dirk Riehle

• Lior Schachter

• Dave Thomas

• Michel Tilman

• Leon Welicki

• Rebecca Wirfs-Brock

• …

Copyright 2022 Joseph Yoder & The Refactory, Inc. 35

https://conteudo.ituring.com.br/evento-como-criar-software-extraordinario

tinyurl.com/creating-great-software

Muito Obrigado!!!

joe@refactory.com

yodamann

“Anything you can do, I can do meta ;-)”

“If you think good architecture is expensive, try bad architecture"

@metayoda

© 2022 Joseph Yoder & The Refactory

Slides available at: https://refactory.com/papers/USP-MetaArchitecture.pdf

